EM611PE: COMPUTER ORGANIZATION
 (PROFESSIONAL ELECTIVE - I)

B.Tech. III Year II Sem.

$\begin{array}{llll}\mathbf{L} & \mathbf{T} & \mathbf{P} & \mathbf{C}\end{array}$
3 0 $\mathbf{0}$ 3

Prerequisite: Switching theory and Logic Design

Course Objectives:

- To understand basic components of computers.
- To understand the architecture of 8086 processor.
- To understand the instruction sets, instruction formats and various addressing modes of 8086 .
- To understand the representation of data at the machine level and how computations are performed at machine level.
- To understand the memory organization and I/O organization.
- To understand the parallelism both in terms of single and multiple processors.

Course Outcomes:

- Able to understand the basic components and the design of CPU, ALU and Control Unit.
- Ability to understand memory hierarchy and its impact on computer cost/performance.
- Ability to understand the advantage of instruction level parallelism and pipelining for high performance Processor design.
- Ability to understand the instruction set, instruction formats and addressing modes of 8086.
- Ability to write assembly language programs to solve problems.

UNIT - I
Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.
Basic Computer Organization and Design: Instruction codes, Computer Registers, Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input - Output and Interrupt, Complete Computer Description.
Micro Programmed Control: Control memory, Address sequencing, micro program example, design of control unit.

UNIT - II

Central Processing Unit: The 8086 Processor Architecture, Register organization, Physical memory organization, General Bus Operation, I/O Addressing Capability, Special Processor Activities, Minimum and Maximum mode system and timings.

8086 Instruction Set and Assembler Directives-Machine language instruction formats, Addressing modes, Instruction set of 8086, Assembler directives and operators.

UNIT - III

Assembly Language Programming with 8086- Machine level programs, Machine coding the programs, Programming with an assembler, Assembly Language example programs.
Stack structure of 8086, Interrupts and Interrupt service routines, Interrupt cycle of 8086, Interrupt programming, Passing parameters to procedures, Macros, Timings and Delays.

UNIT - IV
Computer Arithmetic: Introduction, Addition and Subtraction, Multiplication Algorithms, Division Algorithms, Floating - point Arithmetic operations.
Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt, Direct memory Access, Input -Output Processor (IOP),Intel 8089 IOP.

UNIT - V

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.
Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processors.
Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Inter processor arbitration, Inter processor communication, and synchronization.

TEXT BOOKS:

1. Computer System Architecture, M. Moris Mano, Third Edition, Pearson. (UNIT-I , IV, V)
2. Advanced Microprocessors and Peripherals, K M Bhurchandi, A.K Ray , $3^{\text {rd }}$ edition, McGraw Hill India Education Private Ltd. (UNITS - II, III).

REFERENCES:

1. Microprocessors and Interfacing, D V Hall, SSSP Rao, $3^{\text {rd }}$ edition, McGraw Hill India Education Private Ltd.
2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, $5^{\text {th }}$ Edition, Tata McGraw Hill, 2002
3. Computer Organization and Architecture, William Stallings, 9th Edition, Pearson.
4. David A. Patterson, John L. Hennessy: Computer Organization and Design - The Hardware / Software Interface ARM Edition, $4^{\text {th }}$ Edition, Elsevier, 2009.
